
J. A&. &la&s Me& Vol. 56, No. 1, pp. 125-131,1992 0021-8928’92 $15.00+.00 
Printed in Great Britain. @ 1992 Pergamon Press Ltd 

THE DYNAMIC STRESS OF A CONDUCTING 
HALF-SPACE WITH A CURVILINEAR CUT IN A 

STRONG MAGNETIC FIELD 
(ANTIPLANAR DEFORMATION STATE)? 

L. A. FIL’SH~NSKII and L. I. FOMENKO 

(Received 25 May 1990) 

During the magnetic excitation of a dia(para)magnetic material of a body which is located in a static 

magnetic field, induced (vortex) currents are generated in the body, leading to the appearance of bulk 

Lorentz forces. When allowance is made for these forces, an additional tensor is obtained, the Maxwellian 

stress tensor, which introduces considerable corrections to the stressed state of the body. A magneto-elastic 

boundary-value problem is considered below for a half-space which is attenuated by a curvilinear cavity-cut. 

The problem reduces to a singular integral equation. Results of calculations are presented which 

characterize the dependence of the stress intensity factor, I( III, on the ~nfi~ration of the cut, the strength 

of the applied magnetic field and the excitation frequency. An analogous problem for a single rectilinear cut 

in an unbounded dia(para)magnetic medium has been studied in [l]. 

1. BASIC RELATIONSHIPS OF LINEAR MAGNETO-ELASTICITY. FORMULATION OF 

THE PROBLEM 

THE COMPLETE system of equations of magneto-elasticity has the form [l-3] 

rot E + B = 0, rot H - D’ = i, div D = pc, div B = 0 

ajoij i- ~8s + (j x B)s = PM** 

D = rtE f a (v x H), B - ptH - O$ (V x E) 

ii= pcv + a(E + v x B), 01 = &p. - e,p,,, Y = U' 

cIij :-. 2psij .+ ~~ijQh~ Eij = ‘I, (8jUi _t d$Uj), di = dl8X.j 

IE 4 v X Bl, = 0, IH - v x D], = 0 

(1.1) 

(1.2) 

(1.3) 

IBI,, = 0, IDI,, =O, fa(E+v xB)+pevl,=O (1.4) 
Ia,j + t$jl nj = ‘0 (i, 4, h- = 1, 2, 3) 

ti, = E”iDj + &Bj - ‘j&j (EkDk + HkBk) 

Relations (1.1) are Maxwell’s equations, (1.2) are the equations of motion, (1.3) are the material 
equations, (1.4) are the boundary conditions on the surface of separation of the media and E, HI and 
D, B are the strengths and fluxes of the electrical and magnetic fields, respectively, E, Ed and p,, p. 
are the permittivities and magnetic permeabilities of the substance and of a vacuum, pe is the electric 
space charge density, j is the current density, p is the density of the substance, Ui and a0 are the 
mechanical strains and stresses, tii are the Maxwellian stresses, F and A are Lame constants and 6, is 
the Kronecker delta. The square brackets denote jumps in the corresponding quantity on the line of 
separation of the media. 
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Let a strong magnetic field H” act in a magnetic medium which is in a state of rest. An external 
perturbation gives rise to a deformation of the body and, correspondingly, to an electromagnetic 
field which can be described by the small fluctuations e and h. We shall henceforth assume that this 
is quasistatic [3]. 

In the case of such materials as aluminium and copper, it is advisable to simplify the model by 
ascribing an ideal conductivity (a-, 03) to the medium. In this case, by putting H = H” + h and 
E = e, instead of (l.l)-(1.4), we obtain the following system of equations and boundary conditions: 

h = rot (u x H“), e = -_cr, (u’ + I-I”) 
pT-2~ + (A, + p) grad div u + p, (rot b) X H” = pu” 

[hl, = 0, Ipehl, = 0 
I Qij + j.lc (Hi’hj + Hj”hi - &jH*“h&)l nj = 0 

(1.5) 

Let us now assume that the magneto-elastic medium is inhomogeneous: in it there are tunnel cuts 
along the ~3 axis, Lj (j = 1,2, . . . , k) and the vector of the initial magnetic field H” = (0, H,, 0). 

The corresponding static field (which is independent of the x3 coordinate) is described by the 
following system of equations and boundary conditions: 

(J,i’nl + oiz”n2 = Xi, + ‘12~paHo2 (1 + x sin2 9) ni 
(JSlO& + o,,on, = X,, 

HI* = *l,xHo sin 29, H,* = Ho (1 + x sin2 9) 
nl = cos 9, n, = sin 4, x = pJpo - 1 

Here Xi, (i = 1, 2) are the corresponding components of the mechanical stress vector on the edges 
of Lj , pe and k. are the magnetic permeabilities of the material and of the substance which occupies 
the cavity of the crack (vacuum), + is the angle between the normal to the left edge of Lj (when 
moving from the beginning Uj to the end bj) and the x1 axis (Fig. l), the superscript degree denotes 
the components of the static field and an asterisk refers to the cavity of the crack. 

Hence, the static field is subdivided into a state of plane deformation and a state of antiplane 
deformation. It should also be noted that the magnetic permeabilities of many dia(para)magnetic 
substances are practically identical to the magnetic permeability of a vacuum ~.Lo. It is therefore 
possible to put x = 0, which substantially simplifies the formation of the boundary conditions. 

Furthermore, by virtue of the relationships 

t t t t t tH” 
FIG. 1. 
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h = rot (n x II”) = (Ho~sul, - Hoi&, H,B,u,) 
(rot h) x Ho = (H,sV% 0, III~~~,~u,) 

we obtain the complete system of equations and the boundary conditions which determined the field 
of fluctuations. 

Plane deformation: 

h, = H&&l, h* = -Ho&U1, h, = 0 
el = e, = 0, e2 = -pL,Houl' 

ull cos $ + u12 sin $ = p. xHo {h, + 
+ (h, cos II, + h, sin 9,) 2c sin *} cos 9 + XI, 

021 co9 9 + cral sin 9 = PoxHo (h, co9 $ + 

(1.8) 

+ h, sin 9) (1 + x sin2 9) + X,, 

hI* = h, (1 + x co9 9) + xh, sin II, cos $ 

h,* = h, (1 + x sinv) + xh, sin 9 cos II, 

(1.9) 

[(1.7) are the equations of motion, (1.8) are the components of the electromagnetic field, and (1.9) 
are the boundary conditions on Lj (i = 1,2, . . . , k)]. 

Antiplane deformation: 

vsus + +3& = cI-2uQ” 

hl = h, = 0, h, = H,b’,u, 

e, = -p,Hou3’, e2 = e, = 

(1.10) 

(1.11) 

0 

ogI cos $ + uJgp sin I# = X9”, h,* = h, = Hob’,uS (1.12) 

[ (1.10) is the equation of motion, (1.11) are the components of the electromagnetic field, and (1.12) 
are the boundary conditions on Lj (i = 1,2, . . . , k)]. 

Below, we consider the problem of antiplane deformation (l.lOt(1.12) in the case of a 
conducting half-space x230 with tunnelling crack-cuts Lj along the x3 axis (Fig. 1). Let the 
half-space be free from forces and bounded by a vacuum. The static magnetic field in the vacuum is 
(0, I&,*, 0) while that in the medium is (0, Ho, 0), where Ho = p&Zo*lpe. As the excitation 
mechanism, we shall take either a shear load X3, = Re (X3e-‘o’) which acts on the surfaces of the 
cavities or a magneto-elastic shear displacement wave which is incident from infinity 

US” = Re (u,“e-io’), US0 = t exp {-iv (x1 cos p + x2 sin 8)) (1.13) 

Ys = o/cz, y = y.J)/1 + EL2sin2 f3, z = con& 

We shall assume below that the excitation frequency 6.1 is not too large. Thermal effects can then 
be neglected. 

Under these conditions in a body with cracks, there is a stationary (oscillatory) wave process and 
the components of the fields o3j, t3j (j = 1, 2) and h3 possess a characteristic root singularity at the 
vertices of the defects which leads to the need to take account of the influence of electromagnetic 
effects on the stress intensity factor. 

The mechanical wave in a half-space with a defect is made up of the incident wave field (1.13)) the 
field of the reflected wave 

u.# = Re (U,@)e-‘~t), Us(*) = z exp {-ir (zI cos @ - x, sin p)} (1.14) 
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and the scattered wave field which, by generalizing [4], we can represent in the form 

4 s Q (5) E (51; 21) d.9 

E(f1; 21) = LHP) (yzr1) + Hi+‘) (ysrl*) (1.15) 

Here, p(5) = {pi(~), {ELj), q(t) = {qi(<), IeLi} are the unknown “densities”, He(‘)(x) is a 
Hankel function of the first kind of non-zero order and ds is an element of an arc of the contour L. 
The density p (5) has a simple mechanical meaning: p (5) = - ‘/z [ U3 (<)I where [ U3 (<)I is the jump in 
the displacement amplitude on L. 

The function u3 = Re ( U3 e-““’ ), where U3 is defined in (1.1.5), is the solution of Eq. (1.10) and 
automatically satisfies the condition ~32 = 0 on the boundary of the half-space as well as the 
radiation conditions. 

2. THE INTEGRAL EQUATION OF THE BOUNDARY VALUE PROBLEM. THE STRESS 

INTENSITY FACTOR 

Taking account of (1.3), we can represent the boundary condition (1.12) in the form 

c (9) {& (U, + u,o + UP)) + cm{& (Us + u,” + w} 
x3+w.-.x3-=xs, c(@-cos$-_t isin 

v-1-t x’ 

= +X,* - (2.1) 

The upper sign corresponds to the left edge of Lj (when the motion is from its start Uj to the end 
bj) and + is the angle between the positive normal to the left edge and the xl axis. 

In accordance with (2.1), we require that the mechanical stress vector should be continuous across 
the cuts. On carrying out the operations specified in (2.1)) we find the relation between the densities 

Gw 

By virtue of (2.2), it is sufficient to satisfy the boundary condition on one of the edges of Lj . 
On substituting the limiting values of the functions occurring here into the boundary condition, 

we arrive at the following singular integro-differential equation: 

G (f; 50) = -$- Wp Wld Im (WI C eriY + f@’ Wh) Im (a (9) Co) + 
+ H(o) (wlo*) Im (a (30 c WN + &” (?r'ab*) Im GTR c (%30) e-sia**)l 

iv (Cl = + X, + 2izy (co9 (9 - p) exp (- iy (Et. cos 6 + E, sin g)) + (2.3) 
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+ COs (* + B) *=p (- iY (El 00s B - t2 sin fl))} 
2P (0 = -4 (ii) = --[u, (C)l, 60 E L* (i = i? 2, . . .( k) 

r10 * = I EI - Lo I, rlo = j G1 - Lo I 

al0 * = arg (5 -LO), al0 = arg (L - fto) 

The integral equation has to be solved simultaneously with the supplementary conditions 

f df=O (j=%Z,...,k) 
Ll 

(2.4) 

Relationships (2.3) and (2.4) completely define the solution in the class ho of functions which are 
unbounded on the ends of Lj [S]. 

We will now obtain a formula for determining the mechanical stress factor at the vertices of a 
defect. In order to do this, we parametrize the contour Lj: 5 = 5 (a), &, = 5 (Eo), -1 G 6, 6 6 1. In 
accordance with this, we put 

df 
dr= 

0 (6) 
s’ (8) -r/m ’ 

s’ (6) = -$- , fq6)EHf-11; I] (2.5) 

The singular part of the stress o, in the continuation beyond the vertex of a defect is determined 
from (1.15) and (1.3) and has the form 

where & is the angle of the normal to the left edge of Lj at the vertex c (c = u or b). An asymptotic 
analysis of this equation, taking account of formula (ZS), yields (the lower sign refers to the vertex 

c=4) 

(2.7) 

Hence, a redistribution of the stresses o3j (i = 1,2) at the vertex of a defect occurs when there is a 
preliminary static magnetic field compared with the situation when there is no magnetic field. 

The overall stress intensity factor, which takes account of both the mechanical as well as the 
Maxwellian part of the stress tensor, is defined in terms of the singular part of the expression 

(2.8) 

By introducing here the first three relationships (1.5) and the formula t3j = p,(H,“hj + &%s) we 
find 

Qn = Y (a1u3 COS 9 + (2 + x2) d,US sin $) 

By taking account of the asymptotic form Q,, we obtain the formula for the overall stress 
intensity factor 

K!“lf = lim 1/!&Re(Q,e-*@‘) =- P2V;8’I SSJ(~i)lcos(ot-argR(Fi)) 
r-0 

(2.9) 
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FIG. 3. 

3. EXAMPLES 

Example 1. Let the half-space be weakened by a rectilinear crack orientated at an angle PO = 45” to the xl 
axis, the edges of which are free from forces, while a magneto-elastic wave (1.13) is incident along the vertical 
axis from infinity. The stress intensity factor can be represented in the form 

K III = P, f/i;s aT cos (ot - arg ai) 

P, = - 
ipqa sin (B - PO) 

r/l+ x*sW(B-B0) 
(3.1) 

where PO = O”, 90” and 45” for horizontal, vertical and inclined cracks respectively and 21 is the length of the 
crack. 

The change in the magnitude of (Y + as a function of the normalized wave number for various values of the 
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FIG. 4. 

parameter x is shown in Fig. 2. It was assumed that the centre of the crack is at a distance p1 = 21 from the 
boundary of the half-space. In the case of a horizontal crack (pi = 21) the corresponding results are shown in 
Fig. 3. 

Example 2. Let the space be weakened by a parabolic cut t1 = p1 6, 52 = p@( -1 S 6s 1) and let a 
magneto-elastic wave (1.13) from infinity be incident along the vertical axis. The total stress intensity factor, 
Km, may be represented in the form of (3.1) where, instead of ai, there will be aS7. 

The results of the calculation of the quantities a = a’ and cc, = a’ for p1 = 1 are shown in Fig. 4. Curves 1 
and 3 were constructed for a straight crack (p = 0) and curves 2,4 and 5 were constructed for a parabolic crack 
(p = 1). Curve 5 corresponds to the value 0 = 0 while the remaining curves correspond to 0 = 1. Graphs 1 and 2 
illustrate the change in a$, while the remaining graphs show the change in the quantity a. 

It follows from the results which have been presented that the influence of electromagnetic effects on the 
strength of conducting bodies can be very significant. 
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